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The acceleration of conductors by electromagnetic forces is a process used in the study 
of high speed collisions [i, 2]. While heating of the driven body has been considered in 
sufficient detail [3, 4], mechanical deformations and stresses in the conductor during motion 
have not been studied sufficiently. In addition, it is clear that deformation of the conduc- 
tor can not only distort the picture of high-speed interaction, but can also lead to conductor 
breakage into individual chaotically oriented fragments, acceleration of which is no longer 
possible. The goal of the present study is to investigate limiting acceleration regimes 
from the viewpoint of permissible deformations and selection of parameters providing the 
greatest possible velocity. 

We will consider the motion of a conductive elastic bar of length s and mass per unit 
length m along the axis OZ, perpendicular to the bar axis, udner the action of an electro- 
magnetic load distributed along the bar F(y, t) = (B + Ay)2sin 2 ~t, y e [0.5~; -0.5s 
where A, B are constants. Such a dependence of the accelerating force is characteristic of 
the electromagnetic accelerators described in [2, 4]. The bar motion can be represented as 
translation together with a movable coordinate system fixed to the center of mass, and motion 
relative to that system. Using the theorem of motion of the center of mass and considering 
deformations and velocities at the initial moment equal to zero, after integration we find 
the law of motion of the movable coordinate system (center of mass) relative to the fixed 
system: 

Z s =  Al~+12--B(~2F--sin2~t). 
4 S ~  ~ (i) 

For thin bars, where the effects of inertia of rotation and transverse shear deforma- 
tions can be neglected, the conductor motion in the movable coordinate system is described 
by the elastic oscillation equation [5]: 

EJa TM + mh = f(y, t), (2) 

where ~ is  the d e f l e c t i o n  caused by bending deformat ion; E is  the e f f e c t i v e  modulus of e l a s -  
t i c i t y  w i th  cons idera t ion  of the impuls ive character  of loading and heat ing;  J is  the moment 
of i n e r t i a ;  f ( y ,  t )  = A(y 2 - s ~ t ;  and i n i t i a l  and boundary cond i t ions  are: 

~(v, o) = o, &(v, o) = o, 
a"(I/2, 0 = ="(- -Y2,  t ) =  O, = " ' ( l ~ ,  0 = ~"'(--1/2, t ) =  0 

(the dot and prime denote derivatives with respect to time t and coordinate y). 

Relying on the well-known solution of Eq. (2), presented, for example, in [5], after 
transformations we find 

�9 ~2~--I 

X 1 + ~ -  ~ f (e, 4) = (B + As 2) sin ~" co,Y, 
~ 2 i - i  - -  4~ 

where e =y/x0; e ~  [--0.5; 0.5]; ~1 = ~ ;  z = t/to; Xo = l; ~ 12/a; a i = E J / m ;  ~2~-i 

equation cos $2i-I = c~ �9 

Cheboksary. 

( 3 )  

are roots of the 
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Depending on the sign of the constant A two electromagnetic load profiles are possible: 
load at the center of the bar (e = 0) greater than at the ends, or load at the ends greater 
than the value at the center. We will study the limiting acceleration regimes for both cases. 

i. The Parameter A = -A I, A I > 0. In this case there develop within the bar tensile 
stress o I due to inflection and tensil~ forces, and a stress 0 2 produced by the action of the 
horizontal component of the electromagnetic force y. Following [6], we write 

8 

t f ~ O(z o l = - - a " : E r ,  g~=~- ~ B ( l - - ~ l s ) ~ d e .  (4) 
--0,5 

Here r i s  t h e  c o o r d i n a t e  o f  t h e  f a r  p o i n t  o f  t h e  s e c t i o n  a" i 0~_~=. ~1----AII=/B; S, i s  t h e  
, ~  082 ' 

cross-sectional area. The conditions for bar failure are o I + o 2 = [o], where [o] is deter- 
mined by the mechanical properties of the material with consideration of the impulsive 
character of loading and heating. 

From Eqs. (3), (4) we obtain an equation for calculating the acceleration regime limited 
by the failure conditions 

1 - - 4  rI:~lsin2 (o1% (t -- ~laa)Ei2de - Hi~iEi I* = O; (5) 
--0,5 

rl: = '12rB * B~la 

~ t g ~  1/ch~2i_le 1 cos ~2i-~1~ 
:~" = ~ ~i-~ \ ~h ~'~-~ ~ o ~ /  I~-~ (~), 

2 "1: + - - 1  - 

In the case of resonance of one of the frequencies, where ~i-i = 2mi, the expression for 
the time cofactor takes on the form 

~- i (~  = i --(~i~ sin 2 ~  + cos 2~i~). 

E q u a t i o n  (5)  was u s e d  t o  c a l c u l a t e  dange r  p a r a m e t e r  c u r v e s  ( F i g .  i ,  ~i  = 31 .4 ,  ~i = 0 . i ,  
0 . 2 ,  0 . 5 ,  l i n e s  1-3)  f o r  v a r i o u s  f r e q u e n c i e s  o f  t h e  a c c e l e r a t i n g  f o r c e  and d e g r e e s  o f  l o a d i n g  
f o r c e  i n h o m o g e n e i t y  81. The ba r  c o o r d i n a t e  e I and t h e  t i m e  w i t h i n  t h e  f i r s t  s e m i p e r i o d  a t  
which thetensile stresses are greatest were determined. The calculation results show that, 
except for the case of resonance, the main contribution to bar deformation is produced by the 
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first harmonic. The values of the phase angle mi m corresponding to the highest stresses ex- 
ceed ~/2. 

2. Parameter A > 0. In this case the horizontal components of the electromagnetic 
force which appear due to bar deflection may lead to a loss of stability earlier than failure 
occurs due to compressive stresses. To determine the critical force value we use the energy 
method of [6], based on equality of the critical force to the deflection energy. Considering 
the low value of bending and taking the equation of the elastic line in the form y = C(I - 
cos mE), after transformations we find for the critical value of the force parameter 

. ( > } 1  
I]a = [ n2 y ~1( t  + ~le 2) s - s i n 2 a ~  Y,~2ds ( 6 )  

o 2.~ 

Results of calculations with Eq. (6) (Fig. 2, m i = 3.14 and 31.4, lines I and 2) permit 
finding the maximum permissible accelerating forces at which the bar velocity and trajectory 
can be defined. 

In the design of electromagnetic accelerators for solid bodies the fundamental param- 
eters are the required values of conductor velocity (for given dimensions and density) and 
length of the acceleration path. Using Eq. (i) in relative units, we find an expression for 
the velocity of the center of mass v i and the path traversed, equal to the length of the 
acceleration channel Hi: 

B1 a ~2 . ~i 
Ui E J  48 (2~iT 1 - -  s in  2~lT1), 

B13 t2 - -  ~i 

For the acceleration time ~i we have 

r~ = (01"rl)2 -- sin 2 (ols i 

v 1 2ols i - -  sin 2oi'c i 
( 7 )  

It was noted earlier that for practically all parameter values the highest stresses 
develop in the middle of the bar. Thus, in calculating the sums and integrals we may consi- 
der E l = 0, which significantly simplifies the calculations. Equation (5) then takes on the 
form 

S * $ 
(II2Ei2o s in  (O1T 1 I l l E i i 0  ) + I = O. 8~il/~Ei2i s in  O)IT i - -  4~i * " 2 __ 

( s )  

Here Zil 0 corresponds to the expression for Zil in Eq. (5) at E I = 0; 

r162 tg ~2i '1  

E~2o = ~ i -x  ch + c o s ~  1 - -  2 /2 i -1 (%) ;  

Y,~i = ch cos / ~ - 1  (~:). 

Having expressed the force at the center of the bar in terms of the known value of the 
acceleration channel length 

and making use of Eq. 
inhomogeneity 

~8LTIE')r~ ( 0 ) 2 ~  - -  s in  ~ ohz)  -1  
B = la (12 - -  ~l) 

( 8 ) ,  we o b t a i n  a n  e x p r e s s i o n  f o r  c a l c u l a t i n g  t h e  p e r m i s s i b l e  l o a d  

(9) 
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(8K1E~2~- 4K2Z~l o + t ) ~ -  (4K!E~2o- 48K2E~o + 24) [~ + 144 = 0, (10)  

2 4 �9 ~ . 48H~Eo)~.~l 2304H1EJ % sm %~1 
where  Kt = 12s [~] (~ sin 2 %x) 2' K2 = ~ ~ 

- z [ol (%~i - ~i'2 %~0 

Equations (7)-(i0) then permit finding admissible values of the force load, with use 
of which the parameters of the energy source can be determined. 

Calculations of limits with respect to mechanical deformation and heating rate (assum- 
ing transition of the metal on the conductor axis to the liquid state [3]) show that for de- 
grees of force loading inhomogeneity achieved in practice (61 ~ 0.05) the velocity limitation 
with respect to mechanical deformation is more stringent than that with regard to heating 
conditions. Thus, the role of heating reduces to a decrease in strength of the accelerated 
conductor, as a result of which it fails under the action of mechanical loads. 
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